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ABSTRACT

This research is concerned with the time-fixed transfer between two
elliptic orbits. The transfer is to be accomplished with minimum fuel
requirements. Impulsive thrusts are assumed. The objective of the prob-
lem is to determine the number and nature of the impulses required for
various orbit geometries, Two special cases are investigated which re-
sult from assuming symmetric impulse magnitude and locations. The first
case has symmetry about the line of nodes and the second has symmetry
about a line perpendicular to the line of nodes. The assumption of sym-
metry of the impulses requires that the orbits, assumed to be nearly
circular, have equal semi-major axes, The application of symmetric im-
pulses causes the vacant focus to be displaced perpendicular tc the line
of symmetry. The maximum number of impulses in the first case is six,
whereas in the second the maximum number is four. Charts are presented,
for both cases of the time-fixed transfer problem, which show the defi-
nition of one, two, three, four, five, and six impulse regions in

parameter space.
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Chapter I

INTRODUCTION

This research is concerned with the time~fixed transfer between two
elliptic orbits. The transfer is to be accomplished with minimum fuel
requirements. Impulsive thrusts are used which have been shown to give

optimal solutions for most cases of time-fixed transfer.

In the last ten years much study has been devoted to the problem of
optimal transfer. However, the first investigation was made much earlier
by Hohmann [1] in 1925. Hohmann first considered the problem of applying
two impulsive thrusts to effect a transfer between coplanar circular or-
bits. The impulses were found to be applied at the apses of the transfer
orbit and directed tangentially. This strategy is the well-known Hohmann

transfer.

Many important results have been obtained for optimal multiple-
impulse transfer. In the last decade Lawden [2,3,4], Breakwell [9,10,
11], and others have made many publications in optimal transfer theory,
Hoelker and Silber [5] and Shternfeld [6] investigated the possibility
of three impulse for transfer between coplanar circular orbits. Optimal
transfers were found to be two impulse, three impulse or bi-parabolic in
[5]1, [6], and by Edelbaum [7]. Marchal [8] has presented the most com~
prehensive discussion of this problem in 1965. Winn [12] has investi-
gated optimal transfers between coaxial ellipses. Both Marec [13] and
Edelbaum [14] have considered optimal transfer in the vicinity of a cir-
cular orbit. Xuzmak [15] used Lagrange's method in connection with this

problem. Some numerical results were obtained by Eckel [16].

For time-fixed transfers theoretical studies have been made by
Lawden [4]1 and Lion and Handelsmann[17]. Marec [18] has extended his
work on transfer analysis to include time-fixed rendezvous of long dura-
tion. Gobetz and Doll [19,20] have investigated the rendezvous problem
in the light of interplanetary mission planning. Prussing [21] has made
investigations of coplanar, circular orbit rendezvous. Kolbe and

Sagirow [22] and Marinescu [23] have also made investigations in the




rendezvous problem but with different cost functions and, in the case of

Marinescu, in low thrust applications.

The method and results in the determination of optimal impulsive
space maneuvers have been surveyed by Marchal, Marec, and Winn (24] and

by Robinson [25].

A general analysis of the time—~fixed transfer or rendezvous problem
is presented in Chapter II. The objective of the time~fixed problem is
to determine the number and nature of the impulses required for various
orbit geometries. Two special cases are investigated which result from
assuming symmetric impulse magnitudes and locations. The first case has
symmetry about the line of nodes, discussed in Chapter II1I, and the sec-
ond has symmetry about a line perpendicular to the line of nodes, also
discussed in Chapter I1I. The assumption of symmetry of the impulses
yields the result that the orbits, initially assumed to be nearly circu-
lar, now also have equal semi-major axes due to the motion of the vacant
focus. The method used in the entire time-fixed analysis follows

Prussing [21].

The maximum number of impulses was found to be six. Charts are
presented, for both cases, which show the definition of the one, two,
three, four, five,and six impulse regions in the space of (6f - 90)
and the two ratios of the orbit parameters Ae, Ai, and a phasing param-

eter N9'.

Chapter IV presents the conclusions of the results obtained and

gives recommendations for future research.




Chapter 1I

GENERAL ANALYSIS OF RENDEZVOUS OR TIME-FIXED
TRANSFER PROBLEM

The problem of optimal rendezvous is of practical importance. The
analysis presented in this chapter is concerned with the time-fixed ren-
dezvous between neighboring, non-coplanar, elliptical orbits. For an
orbital rendezvous the desired final boundary conditions require that the
position and velocity of the vehicle at the final time be the position
and velocity of the target body. Optimal solutions to time-free transfer
require less restrictive final boundary conditions. The analysis follows

from Prussing's [21] presentation of a similar problem.
A, Analysis

Since a thrusting vehicle is assumed to be moving in a gravitational

field, the equations of motion can be written, using a state vector fornm,

where
T
X = (2.1)
™
as
% =fx, a) . (2.2)

The cost for the rendezvous problem is given by
t

£
¢=—f |a| dt (2.3)
t

o

or

ﬁ = =g - (2.4)




The negative sign appears so that the maximum principle can be used,
that is, maximizing the cost @ given by (2.3) minimizes the fuel re-

quirements.

The Hamiltonian
H=ATf (2.5)

is given, after augmenting the states to include @ and using the fact

that Kp = -1, by

H=A_ -v+A -g +A .a-a. (2.6)

The control in this problem is the thrust direction and magnitude.

Applying Pontryagin's maximum principle yields:

max T - 5
H=>A -a-= A, a . (2.7

This states that the optimal a is parallel to Xv’ since the dot

product is maximum when .two vectors being so multiplied are parallel.

Substituting (2.7) back into (2.6) gives

H=A_ -v+A g+ (A]-1a. (2.8)

Maximizing the Hamiltonian with respect to the magnitude of a row

yields:

IX I > 1 => maximum a

v
A <1=>a=0
IXVI = 1 => unknown a . (2.9)




If unlimited power is assumed so that impulsive thrusts are now
acceptable, then for [le > 1 an infinite thrust will be used for a
finite length of time. This would definitely not minimize the cost, so
that in this analyziz, |7§| can never be greater than unity. For l7§|

identically equal to unity an impulsive type thrust can be applied since,

generally, IXVI = 1 only instantaneously, except in a singular case
where ]le =1 always. Therefore the impulsive thrusts occur when
Al =1
v

and have a direction given by

]
I
>

In addition, the primer vector, Xv, and its first derivatives must be

continuous,

Summarizing, the necessary conditions for an optimal impulse ren—

dezvous are:

(1) Xv’ which Lawden [4] calls the primer vector, and its first

derivative must be continuous everywhere,

(2) The thrust impulses are to be applied in the direction of the

primer vector at the times for which rivl =1,
(3 IX | <1 during the transfer,
gl =

(4) From conditions 1 and 3 the slope of the primer magnitude time
history is horizontal for impulses which are not at the initial

and final times.
These conditions are seen more clearly in Fig. 1 which shows a typical
time history for an optimal three-impulse solution.

In analyzing optimal finite thrust boundary value problems a primer

history can be found in terms of the optimal thrust magnitude which will




I 2l

1.0

6, 6> b3

Fig. 1. TYPICAL THREE IMPULSE, PRIMER MAGNITUDE
TIME HISTORY.

satisfy the boundary conditions with no restriction on the primer mag-
nitude. However, for impulsive thrusts the magnitude of the primer is
constrained to less than or equal to unity. In the general problem the
primer history is dependent on the thrust magnitude. By assuming small
orbit changes and retaining only first-order terms in an expansion, this
dependency is removed. Thus linearizing the equations of motion about a
circular reference orbit, the well-known Hill's equations are obtained

as

X =u
y=v
zZ =W

fx + 2nv + 3n2x

<o
I

f ~ 2nu
y

(2.10)

.
]
[
¥
=
N



where x is the radial component, y is the circumferential component,
and =z is the out-of-plane component; fx’ fy’ and £ are the cor-

z
responding thrust components and n is the mean motion. Equation (2.10)

can be rewritten as

-

= FX + GU (2.11)

where

F = 9
3n 0 0 0 2n 0
0 0 0 -2n O 0
L.O 0 0 0 Q ni_
03 03
0 0
G = 1
0. O 0
03 1
0 0 1 (2.12)




where

(=]
(=]
o
o

d"
o
o
o
ol
1
o

(2.13)

o
(=]
o
o

The etfect of several velocity changes, due to the impulsive thrusts,
during a transfer is obtained by superposition of the solutions of the
linearized equations of motion (2.11), 1In terms ox velocity changes made

at times tj(j =1, ..., n) the final state is given by

n 0
1
X(t) = ®(t,, t ) X(t) + Z ot tj) &) (2.14)
j=1

where X(t ) is the final state and ®(ti, tj) is the state transitionm
(2}

matrix with units chosen such that R, the radius of the reference or-

bit,and n, the mean motion of the reference orbit, are both unity.

The transition matrix is given by

4-3 cos O 0 0 sin O 2(1~cos 9) 0
6(sin 6-0) 1 0 2(cos 6~1) 4 sin 6~30 0

0 0 cos @ 0 0 sin 8

q)(ti:t.) =

J 3 sin 0 0 0 cos 8 2 sin 6 0
6(cos 6-1) 0 0 -2 sin 6 4 cos 6-3 0

0 0 -sin @ 0 0 cos @

L ]

(2.15)



where @ =n(t, - t.).
1 J

For convenience a new final state variable is defined as

X'(tf) = X(tf) - @(tf, to) x(to) (2.16)

and the transition matrix under the summation is partitioned so that

%
1
t.) =1o (t_, B A
J) [ l( £ tJ):Qz(tf,

T

o(t

£ tJ.)] . (2.17)

Substituting (2.16) and (2.17) into (2.14) yields:

n
X(ty) = z o (e tj) AV, (2.18)
J=1

At the time of the impulse the magnitude of the primer vector is

unity and its directiom is jdentical to the direction of the thrust so

that

(Av)j = TZﬁjT ) (2.19)

In terms of Xv and the definition

Yj = QZ(tf’ tj)(Av)j (2.20)
Eq. (2.18) becomes
' - N A N .21
X' (t) Z‘Y(tj, Gy |5, (2.21)
J




where

Y(tj: ()\V)j) = [Yl’ Yzy ° 00y Yn]
— f—
Ayl
. sz
AV = . (2.22)
AV
n

The arguments of the six-vector VY(t., (Xv)j) are determined from

a knowledge of the primer vector. The t.'s are determined when the

magnitude of the primer is unity and the components of the (Xv)j's

are the direction cosines (Ku),, (A)., and (A ).. The six-vector
3 v’ v j

§j has the physical interpretation of being the change in the final

state due to a unit magnitude velocity change at time t,

in the opti-
mal direction Xv(tj).

Combining (2.5) and (2.10) gives the Hamiltonian as
H=Au+Av +Aw
x y z
2
+ A (f + 2nv + 3n°x)
u T x

+ A (£ - 2nu) + A (f - nzz) - a
vy w oz

(2.23)
The adjoint satisfies the differential equation
AY = -H . (2.24)
X X

10



Equation (2.23) together with (2.24) yield:

X = SnZA + 2nA
u u v
X = -2nA
v u
2
y = D Aw . (2.25)

The out-of-plane component is uncoupled from the other components and
satisfies a linear oscillator equation. The in-plane components are

solved simultaneously and the solutions are

>
it

2A + B cos 6

>
1]

~340 - E - 2B sin 6

M cos & + N sin @ (2.26)

w

where 6 = n(t = tp) and A, B, E, M, N, and tp are constants of
integration. Equation (2.26) may also be obtained by a linear combina-

tion of the rows of the last three columns of (2.15) since
=T =T T =T
(7\r(t), AL (B) = (AL(t), 7\v(tf)) O(ty, t) . (2.27)

Impulses are applied when Iﬁvl =1 so that the remaining

Hamiltonian is now

H=A_ *v+Ah +g8=A_.V~- e (2.28)

This can be rewritten as

H = -na(A_ + n\ ) - nzah . (2.29)
v u u

11




From the expressions for Ku and Kv, (2.26), the Hamiltonian is

now
2
H=-n"2aA . (2.30)

For time-free transfer H = 0, which implies that time-free transfer is

obtained here for A = 0.

From (2.26) it is evident that for the linearized equations of mo-
tion the primer vector, evaluated along the circular reference orbit, is
independent of the perturbed trajectory. Thus the linearized equations
ot motion and the adjoint equations can be solved separately, This is
in contrast to a problem with a nonlinear state equation in which the
adjoint variables are functions of the states. Because of this separa-
bility the matrix V¥ can be determined from the necessary conditions
for au optimal solution independent of the boundary value problem. And
since the primer vector is not a function of the states it is continuous

along with its first devrivative.

The solution to the rendezvous problem requires more tnan a know-
ledge of thrust magnitude, direction,and location. For an initial lo-
cation of the target, the number of impulses to realize the optimal ren-
dezvous must be determined. The number depends on the transfer time.
The problem is further complicated in that for a fixed transfer time and
initial conditions, either an initial or final coast period may be re-

quired in the optimal solution.

For impulsive solutions to transfer problems Neustadt [27] and
Potter [28] have found that for a linear system the maximum number of
impulses necessary to realize the optimum transfer is equal to the num—
ber ot constraints on the state variables at the specified final time.
They show that any velocity impulse schedule containing a larger number
of impulses than the number of constraints can be reduced to an impulse
schedule with the number of impulses equaling the number of constraints
without increasing the total impulse magnitude required. Here, in the
non-coplanar problem, three position and three velocity constraints

exist at the final time, thus the maximum number of impulses required is

12




six. Another result of Neustadt [27] is a theorem that guarantees the
absence of local false maxima. Hence, a Hamiltonian that provides a
solution to the rendezvous boundary value problem automatically provides

a globally optimal solution.

vince the amount of fuel consumed depends greatly on the position
of the target relative to the rendezvous vehicle at launch, a certain
amount of the specified transfer time in some cases is best invested in
a coast period, allowing a geometrically more favorable rendezvous. An
initial coast implies waiting in the initial orbit before applying the
first thrust impulse. A final coast implies that the rendezvous takes
place earlier than the specified final time. A combination of initial

ana rinal coast is often optimal.

To illustrate the rendezvous requiring coasting periods to yield
optimal solutions, consider the primer magnitude shown in Fig. 2. Im-

pulses are applied whenever ]XVI =1 so that in this case they occur

| Ayl

Fig. 2. PRIMER MAGNITUDE SHOWING COAST PERIODS.

13




at t = to’ t.,, t_.. The total transfer time being tf - to. If, how-

1 i
ever, the final time were to occur at some t% less than tf but greater
than t,, impulses would be applied at t =t  and t . Since ]le

has not yet become one at t = t% nc other impulses are required so that

rendezvous is achieved at t = ¢ followed by a coast in the final orbit

2’

from t2 to t% so that the total transfer time t% - to is satisfied.

An initial coast would occur for an initial time té greater than to
but less than t2. Here the ecoast would be in the initial orbit from

t; to tz followed by two impulses at t2 and tf with rendezvous
being achieved at t =t

£

B. Determination of Optimal Impulse Solutions

The magnitude of the primer is given as

T 2 2 2
N, = A2 A2 422 . (2.31)

Substituting (2.27) and normalizing with respect to one of the constants

of integration, say B, yields

5,12

o = (2y + cos )2 + [37(8 + ) + 2 sin 012

o

+ (p cos O + ¢ sin 6)? (2.32)

where the four parameters are

_A
7 =B
- _E.
1= 38
_M
=5

14




¢ =g . (2.33)

The location of the maxima are the 6's that satisfy

= 2
g | =0 (2.34
W\ 2 /|~ -34)

or the transcendental equation

sin.e(% 7 + cos @

27(6 + 1) = - 3
=~ 4+ cos &

2
(u sin 8 = & cos 6)(n cos 8 + € sin 6)

. (2.35)
3
3(5 7 + cos 6)

+

For more than three impulses there must exist at least (i - 2)
equal maxima where 1 1is four, five, or six corresponding to the numbef
of impulses. Therefore, for six impulses there must exist a 91, 62, 63,

and 64, all of which must satisfy (2.35) and simultaneously satisfy

F(Gl) = F(Gz) = F(93) = F(94) (2.36)
where
Nk
F(.) = ) (i =1, 2, 3, 4) .
* B 6 =9

In the general problem the number of free variables that are present
is six, that is, 7y, u, €, 7, tp, and the impulse magnitude IZ&jl‘ For
one impulse transfer the five parameters plus one impulse magnitude con-
stitute the six free variables. Two impulses would require a constraint

on the magnitude of the primer so only four independent parameters would

15



exist. However, two impulses are now available, bringing the total vari-
ables again to six. This exchange of independent parameters and number
of constraint equations continues to the maximum number of impulses,
namely six. Here, for six impulses no freedom is available with the five
parameters. However, six impulse magnitudes are at our disposal allowing
the use of six free variables. The problem is thus a very complex opti-
mal transfer search problem and, even if a program were constructed to
perform this search, a method of presentation of the solutions would be
an almost impossible task. 1In this report, the problem to be analyzed

is a sub-family of the much larger family of solutions to the general
rendezvous problem. The sub-family will be discussed in detail in the

next chapter.

16



Chapter 111

ANALYSIS AND RESULTS

The sub-family to be analyzed is the family of solutions having
Hamiltonians or primer histories symmetrical about some axis. This would
indicate that the impulses are located symmetrically about this axis. It
is further assumed that the impulse magnitudes areé also symmetric about

this axis. It will be shown that this corresponds to orbits having equal

semi-major axes.

A, Analysis

Assume a symmetrical primer magnitude history such that

A, =1 at positions %0, =1,2 .0 (3.1)

where the 6's are symmetrical relative to the mid-position 6 = 0.
Also, assume that the impulses iZﬁjl are the same at both +6j and

-0..
J

For symmetry:
=0 and t=0
or
=0 and p=20. (3.2)
The symmetric primer for { =0 is
F(8,) = (27 + cos 6 )2 + (398, + 2 sin 6 )2
i i i i

+ pz 0052 0. (3.3)

and for p =0

I




F(Gi) = (27 + cos Gi)z + (379i + 2 sin Gi)z + §2 sinZ 6, (3.4)

The radial impulse component, 2y + cos Gi, is an even function of
Qi so that the impulse is directed in the same sense in the radial di-
rection as indicated in Fig. 3 by impulse direction 1. The tangential
component 379i + 2 sin Gi is an odd function so that the sense reverses,
indicated by impulse direction 2 in Fig. 3. The net result is that the
vacant focus is displaced in a direction perpendicular to the line of

symmetry. This indicates that

Ha =0

ZE is perpendicular to line of symmetry, &8 =0 . (3.5)
DISPLACEMENT
OF VACANT
FOCUS 2

Fig. 3, EFFECT OF IMPULSES ON DISPLACEMENT OF
VACANT FOCUS.

For { = 0 the out-of-plane component is an even function so that
the plane is rotated about the line of symmetry, that is, the line of
symmetry is the line of nodes. The out-of-plane component for p =0

is odd so that the plane is rotated about an axis perpendicular to the

18




line of symmetry. This indicates then that the line of symmetry is per-

pendicular to the  line of nodes.

The transcendental equation for the maxima location for ¢ = 0 is

4 b2
~sin 9{§ Y + (1 -3 ) cos 9}

2y 6 = (3.6)
37 + cos 6
2
and for p =0
2
-sin 6{% 7 + (1 + %;) cos 6}
2y 6 =

%% + cos 6

The reference orbit is chosen to be located symmetrically between

the initial and final orbits as shown in Fig. 4

\

|

N/
TR
/

Fig., 4. REFERENCE ORBIT LOCATION.

19




B. Rendezvous Boundary Value Problem

The impulse locations for the primer defined by (3.3) or (3.4) are
symmetric about the line of symmetry. Adjusting the integration con-
stant tp so that 6 = 0 along the line of symmetry a four-impulse

symmetric primer would appear as in Fig. 5.

The svmmetry allows the analysis to be rewritten as follows.

Let £ =L 1 (3.7)

so that

fi fh hi

1
]
D

= -26 (3.8)

-8, -, Y 8, 8,

Fig. 5. FOUR-IMPULSE SYMMETRIC PRIMER.

20



where

6,. =un(t, - t.) .
ij i J

The states at time to

can be written to first order; that is, for
(=0

1 .
-3 de sin th

SQF

-8e(1 - cos ehf) e

31 .
) sin th

X(t) = (3.9)
o

1
> de cos th

de sin th

oi
-2 cos th

and for p =0

1 .
2 de sin th

SQF
—Se(l - cos ehf) -3

di
cos Gh

2 i

X(t) = (3.10)
o

1
de cos eh

2 f

de sin enf

51 sin 6
L 2 hf -

21




where e is the component of the eccentricity vector perpendicular to

the line of symmetry. For example, for symmetry about the line of nodes

be = Be, (3.11)

and for symmetry about a line perpendicular to the line of nodes

= . (3.12
de 6e1:1 )
The state at time tf, to first order for f =0 is
B 1 o] in ¢ i
5 Oe sin & .
36

F
Se (1 cos ehf) + )

i .
5 sin an
X(tf) = (3 .13)

de
cos eh

2 f

de sin th

éi cos 6
| 2 hf _

and for p = 0

22



1 .
ey S5e sin th
SQF
de(1l - cos ehf) + =

di
> cos th

X(tf) = (3.14)

de
2 cos th

de sin ehf

From (3.13), (3.14), and the definition of ®(th, tj) and X'(tf) we

obtain, for ¢ =0,

36

X(th) = -de

oi

and, for p =0,

23




&6

=51
X(th) =

—Sell

(3.15)

The state equations can be rearranged so as to appear in the follow-

ing form.

de =-—2.Z OV [cos 8. (AN). + 2 sin 6.(A).]
i i u’i ivvii

1
6eF

31

where

or

]

1

39 + 28e cos 6_ = 2 E AV [36.(A). - 2(A D1
F £ i i v'i u i
i

2 2 AV. (A ). cos 6,
i"wii i

i
1
(A), = ——— (27 + cos 6.)
RN EICR 1
1
A) =-——— (378, + 2 sin 8)
Vi R : i
(A ). e —1 u cos Qi

v Jre)

1 .
A =-———§51n6i

v ./F(ei)

24

(3.16)

(3.17)



where F(Gi) is defined in (3.3) or (3.4). 89% is introduced in this
particular form to remove the dependence of SSF on G(tf) so that

during a coast 66% remains constant for a change in G(tf).

These equations, (3.16), are then used for the entire numerical

analysis for both cases and for all impulse regions.

C. Maxima at 6 = 0

The assumption of symmetry of the magnitudes of the impulses is
continued on into the investigation of five- and three-impulse type solu-
tions, The symmetry of the primer would require a maximum to appear at
6 = 0, For a maximum the second derivative of F(8) must be less than

zero at 6 =0,

For the case { =0, pn Z0 and the second derivative is determined

as
. 2
F*" (8) = —cos 8(2y + cos 8) + sin” 6

- 2 sin 6(376 + 2 sin 6 + (3y + 2 cos 6)2

+ pz sin2 6 - uz cos2 6<0 . (3.18)
At 6 = 0 the condition is
2 2
99" + 10y + (3 - pY <o (3.19)

or

S
-5 9p2—2< 7<—§ +,./9p.2—2 . (3.20)

For a real v, uz must be greater than 2/9. The conclusion is then

that a symmetric three-impulse type primer exists for € = 0.

For p =0, { #0 and the second derivative is found to be
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F'" (8) = -cos 8(2y + cos O) + sin2 8
- 2 sin (3790 + 2 sin 8) + (37 + 2 cos 9)2

2
+ §2 cosze- Qz sin"8< 0 . (3.21)
At © = 0 the inequality criterion becomes
2 2
9" + 10y + (3 + ) <0 (3.22)

which is impossible for real ¥ and {. Thus for p =0, { #0 a

three-impulse type symmetric primer does not exist.

D. Various Impulse Solutions

2
It was found that for 7y << 1 and p =~ 3, three and four equal
maxima could be found. This suggests the possibility of five and six
impulses as shown in Figs. 6 and 7. The analysis for both five and six

impulses indicated the existence of such impulses for € = 0 but not

for p = 0. Thus, as shown for the existence of maxima at 6 = 0, five
and six impulses will occur for symmetry about the line of nodes but not
for symmetry about an axis perpendicular to the line of nodes. Further
numerical analysis showed that the total transfer angle for five impulses
close to 4x, 12n, etc., and for six impulses is 8w, 16w, etc. The ex—
istence of six impulses agrees with Marec [29] in that they appear for
very small da and for line of symmetry near the line of nodes. Here

9a = 0 and line of nodes is the line of symmetry, and the total trans-
fer time is almost an integral number of revolutions, here found to be

four revolutions, eight revolutions, etc.

For a symmetric primer with impulses of symmetric magnitude a two-
impulse-plus-coast region will exist only adjacent to the boundary of
a four-impulse region. This is true, since the regions requiring an
initial or final coast require that either the initial er final impulse
magnitude of a neighboring region go to zero. Since the impulse magni-

tudes are assumed to be symmetric here, both initial and final impulse
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1 I 2

Fig. 6. TWO-PLUS-COAST PRIMER.

\ 0 /

Fig. 7. ONE-PLUS-COAST PRIMER,

magnitudes go to zero simultaneously. For the symmetric primer the
two-impulse-plus—-coast primer magnitude will appear as in Fig. 8. Impulses

occur at iel and rendezvous begins at -6 and terminates at 62 with

2
initial and final coast.

A two-impulse-plus-coast region will exist in both cases under in-

vestigation.
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IAl

8, 8, 83 8, 85
Fig. 8. FIVE-IMPULSE PRIMER HISTORY.

A one-impulse-plus-coast region will occur adjacent to the symmetric
three-impulse region in the case of symmetry about the line of nodes,.
This region occurs when the initial and final impulses vanish simulta-
neously in the three-impulse region. A typical primer magnitude is
shown in Fig. 9 for the one-plus-coast solution. One impulse at 8 = 0

with initiation of rendezvous at 91 and termination at 61.

Once the existence of a five- or six-impulse Hamiltonian has been
determined, the corresponding range of rendezvous parameters is easily
determined. With the availability of a five-and six-impulse region a
three-plus-coast region, adjacent to the five-impulse region, and a four-

plus—coast region. adjacent to the six-impulse region, are also present.

\IXI

8, 8, 85 8 8% G

Fig. 9. SIX~IMPULSE PRIMER HISTORY.
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E. Non-Unique Solutions

This section investigates a set of multiple-~impulse solutions for
which the maximum principle is degenerate. This occurs when the magni-
tude of the primexr is unity during the entire transfer. Although this
solution satisfies the necessary conditions for an optimal transfer, the
impulse times are not determined by the maximum principle. This be-
havior is analogous to the singular arc which arises in nonlinear prob-

lems when the switching function is zero over a finite time interval.

Equation (3.3) shows that in order to have a primer of constant

magnitude, for the case { =0,

J3, (3.23)

=
1

For p = 0 a non-unique primer cannot be obtained. From (2.8) and (2.33)
solutions with 7 = 0 represent solutions from which the time constraint

does not affect the cost, that is, the cost is that of time-free transfer.

Introducing the paramater (¢ defined by

o = tan = —— (3.24)

allows the following analog between non-unique solutions and the transfer
problem. For o < 60° the corresponding transfer region is Region I,
defined in [30] as the degenerate region. Here the associated cost from

[30] is
T = de + 351 . (3.25)

To achieve this cost from (3.16), 7y =0 and u = J§ the conditions

required for non-unique solutions.
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It is possible to obtain non-unique solutions for symmetry about

the line of nodes and for & < 60° but not for symmetry about a line

perpendicular to the line of nodes or for « > 60°.

The boundaries of the non-unique region are determined from the
second equation of (3.,16). For a given (¢, the maximum and minimum
values of 59§/T are found. This may be accomplished graphically as

follows.

NG .
de = 2 22-—————5— (4 - 3 cos Gi)
F(6
89% = =2 :E (66, sin Gi + 2 cos 9i)
F(6, )
AV | 9
5i o= 2 z —2— 3 cos 0, (3.26)

’F(Gi)

For a given B8i/8e = tan ¢, @ < 60°, the maximum and minimum val-

ues of w, defined as

88!
w = tan 1 ___F (3.27)
6e2 + Bi

must be determined. From (3.26) obtain

4 - 3 ave cos2 6.
2 (3.28)

0
o
o+
Q
[
)

J3 ave cos2 0.
i
or
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zg \Vi cos2 6. = ave c052 0. 4 <1 . (3.29)
i

0 3 +.43 cot @

So that the problem is to determine

max z W.(36. sin 8. + cos 6.) (3.30)
min i i i i
i
subject to
zz W =1, ave 0052 8, = 4 . (3.31)
n * 3 +J3 cot

Therefore, plotting 30 sin 6 + cos 8 vs sin2 © yields a graphical me-
thod to perform the computation. Such a plot is shown in Fig., 10, The
maximum and minimum values of (3.30) can be obtained by constructing the
convex hull corresponding to a given G(tf). Figure 10 shows the convex
hull, h;avy lined portion, for e(tf) = 225°, TFor ave cos2 ei =0.7, or
ave sin Gi =0.3, the maximum value of 39 sin 6 + cos 6 is read off
on the chart as being equal to 3.4 and corresponds to a two-plus-coast
transfer, and the minimum is read at -7.0 which also corresponds to

a two-plus—-coast transfer. It can be seen that the convex hull is a
function of G(tf) and that for w's corresponding to points inside
this hull it is possible to determine various non-unique optimal solu-
tions. Two, two-plus—coast, three- and four-impulse solutions are pos-

sible.

F. Optimal Solutions Symmetric About the Line of Nodes

To obtain the impulse region boundaries one of the impulses in (3.16)
is set to zero and the other impulses then varied until the desired value
of ¢ and the corresponding value of ww are obtained. The inverse of
Egs. (3.16) is then solved for the impulse magnitudes in terms of e,

69%, and Oi in order to determine the type of region that lies to
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3@sin 8+ cosf

o L T R R R 40
0.2 04 06 / 10
// sin 8
-4 | /
/"—CONVEX HULL
B /

i /

_|2 e

-l6 -

Fig. 10. 36 sin 6 + cos & VS sinz 6.
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either side of the boundary. Plots are then obtained for various

-1
o = tan di/de with ® vs tf the total transfer time.

Figures 11 through 21 show such plots for

0°< o< 90°. (3.32)

In Fig. 11 the four impulse regions near tf = 2.0 and 4.0 are bounded by
a two-plus-coast region on the left and a two-impulse region on the right.
The two-impulse region boundary is determined when the intermediate im-
pulses of the four-impulse region vanish and the two-plus~coast region
boundary is determined when the initial and final impulses vanish. The
two-impulse boundaries are determined in like manner for the four-impulse
region near tf = 0.5 and 2.5. The three-four impulse boundary is de-
termined as the impulse location of the intermediate impulses approaches
zero. The two-three impulse boundary is determined when the impulse at

6 = 0 in the three-impulse region vanishes.

90°
soo —
|w| 2 | 4
300 _—
3
o° |
0.5 1.0 1.5 2.0 25 3.0

Fig. 11. IMPULSE REGIONS FOR « = 90°,
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For «a = 85° a two-plus—coast region appears in the lower portion
of the plot. All other regions are somewhat distorted forms of those

for « = 90° and continue to appear as « decreases.

90°

60

30

©w 0
-30
2t 4
-60
~90 35 2.0

Fig. 12. IMPULSE REGIONS FOR (¢ = 85°.

For o = 68.7° a six- and a four-plus-coast region appear near
tf = 4,0, The two-plus-coast region near tf = 0 has moved upwards and
is stretched to the right. The end ot the four-plus-coast region appears
for « = 65°. Beyond this value of @ the four-plus-coast no longer ap-
pears. For ¢« = 63,8° a five- and a three-plus-coast region appear near
tf = 2,0, The five-~ and three-plus coast and six-impulse regions have
reached their limit at « = 60.8°.

For @ = 45° the non-unique region appears as shown in Fig. 19.
The coplanar case, corresponding to & = 0°, 1is shown in Fig. 21. As
« approaches 0° the intermediate impulses of the four-impulse regions
near t. =05 and 2.5 are located at 6 = 90° and 270° respectively,

and their magnitudes approach zero so that at o = 0° the two-impulse

region is actually the boundary of the four—-impulse region,
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90°
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60 |- 2 2° 4
3
30 A& 3 / A
o]
2 4 2 2* 4 12 4 2* 4
-30 |- 2
_60 l—
-90 ' '
05 10 1.5 20 25 3.0 35 40
¥y
Fig. 13. IMPULSE REGIONS FOR o = 68.7°.
90
2 4
60—
3

30 - 3
2 R o+
w 2 4 2 2 4 2 @ 2 4

0

30l

-60 5 > 4
]

I
0.5 10 1.5 20 2.5 30 35 4.0
t
f

Fig. 14. IMPULSE REGIONS FOR o = 67°.
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) 2 2 4
> 3
30(\2 3/ /
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@ 0 2 4 2 2 4 '} 2 4
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-30
-60
-90 J
05 1.0 1.5 20 25 30 35 4.0
te
Fig. 15. IMPULSE REGIONS FOR o = 65°,
90
.2 a
60—
itV 3
yd
2t
30
“ o
2 4
-30.—
_60._
-90 '
05 20 25 30 35 4.0
te
Fig. 16. IMPULSE REGIONS FOR « = 63.8°,
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90°

60

)

30

. | l-. ] Zﬂw§;ﬁ
w O
2 4 2 2* 4/;5 4 2*

0.5 1.0 25 30 35

b

Fig. 17. IMPULSE REGIONS FOR (@ = 61.5°.

20

60—

sok 2t

-60 —

tf

Fig. 18. IMPULSE REGIONS FOR ¢ = 60 .8°,
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90°
60 L
30 - NON - UNIQUE
4
o]
2 4
—30 .
_60 -
2* 4 2¢
f T raNr— i
-0 s
05 0 1.5 20 25 2730 “2* 35 47 40
b
Fig. 19. IMPULSE REGIONS FOR ¢ = 45°,
2 4 2 2+t 4
% L LA L/
3 ot 2t
60 “‘W
30— NON - UNIQUE

Fig. 20. IMPULSE REGIONS FOR ¢ = 10°.
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50 | St &N ) 2
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te

Fig. 21. IMPULSE REGIONS FOR « = 0°,.

Since the line of nodes is undefined in the coplanar problem, Fig.
21 holds true both for symmetry about the line of nodes and symmetry

about a line perpendicular to the line of nodes.

To obtain negative (-'s the impulse directions in the plane of the
orbit are reversed, that is, the signs of (7\u)i and (7\v)i are re-
versed., The effect of such a sign change is to reverse the sign of w
without affecting the sign of 8i. Thus to obtain the optimal impulse
strategies for negative « merely reverse the sign of ¢ and w simul-
taneously. Figures 3 through 13 yield a three-dimensional picture in

parameter space of the optimal impulse strategies for
-90° < o0 < 90°
-90° < w < 90° (3.33)

as functions of total transfer time t measured in revolutions.

f’
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Enlargements of typical five- and six~impulse regions are shown

in Figs. 22 and 23.

90.0 —

85.0—

For a > 60° the time-free transfer solutions, that is

in Region II defined in [30].

400 4.0l 402 403
t
f

Fig. 22. ENLARGEMENT OF SIX-IMPULSE REGION FOR « = 65°.

7 =0, 1lie

Region II is the non-degenerate region,

and the cost associated with this region is

T =J?sel)2 + (51)2. (3.34)

From Eqs. (3.16) it is possible to achieve this cost from unique Hamil-

tonians.

w = 0.

The solutions appear on the horizontal line displaced from
For tF < 1.0 a one-plus-coast strategy is required located at
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40.0

35.0

1.98 1.99 200

Fig. 23. ENLARGEMENT OF FIVE~IMPULSE REGION FOR
= 63.8°.

6 =0. For tF > 1.0 the impulse at & = 0 can be supplemented with

impulses at © = *2x. However, the cost is still given by (3.34). That

is, for tF > 1.0 the strategies are not unique since a mixture of

strategies can be used with the same cost.

G. Optimal Solutions Symmetric About a Line Perpendicular to
the Line of Nodes

The same type of analysis is used here as in Section III.F. except

Bell is substituted for 8eL and now

Aw = sin 6 . (3.35)
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Figures 24 and 25 show the results of the numerical analysis. The param-
eter space is broken up into mainly two- and four-impulse regions. A

two-plus—coast region does appear between tf =0.5 and tf =1,5. Fig-
ure 25 shows the optimal impulse regions for ¢« = 65°. Non-unique solu-
tions do not exist here, and other charts would appear much like Fig. 25,

Again for < 0 the sign of w 1is reversed simultaneously.

90
60—
lw|
2 2 4q
30—
o 1 1 | | |
05 1.0 1.5 20 2.5 30 3.5 4.0

Fig. 24. IMPULSE REGIONS FOR p =0 AND « = 90°.

2
6o |— 2
2#

—30 -
-.60 b
—o0 | | | L
05 10 1.5 20 25 30 3.5 4.0
te

Fig. 25. IMPULSE REGIONS FOR p =0 AND o = 65°,
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Chapter IV

CONCLUSIONS

The time~fixed problem has been investigated for the case of transfer
between non-coplanar nearly circular equi-energy orbits with symmetry of
impulse magnitude and location about the line of nodes or about a line
perpendicular to the line of nodes. Charts are given which show the one,

two, three, four, five, and six impulse regions characteristic of these

cases.

This study should be extended to attempt a classification in three
dimensions of the optimal number of impulses for other cases of near-
circular rendezvous. This classification would be very valuable as input
to an iterative optimization program for n-impulse interplanetary trajec-
tories. An effort should be made to determine a suitable way of categor-
izing the optimal solutions to display the impulse times, magnitude, and

directions for all the relevant initial conditions and transfer times.
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